# BP for convolutional layer 

Jiashu Xu

October 2020

## 1 conv layers BP

Let $I$ images of shape (C, H, W), and $F$ filters of shape (FN, C, FH, FW), let Conv2D $(\mathrm{I}, \mathrm{F})=\mathrm{O}(\mathrm{FN}, \mathrm{OH}, \mathrm{OW})$ where O is

$$
O_{c x y}=\sum_{k=1}^{C} \sum_{i=1}^{F H} \sum_{j=1}^{F W} F_{c, k, i, j} I_{k, x-1+i, y-1+j}
$$

for $c=1, \ldots, F N$.
We can implement it using im2col, let $\phi(I)$ be $\operatorname{im} 2 \operatorname{col}(\mathrm{I})$ such that $\phi(I)$ has shape $(O H \cdot O W, F H \cdot F W \cdot C), F_{f}$ be reshaped filters F.reshape $(-1, F N)$, thus having shape $(C \cdot F H \cdot F W, F N)$, similarily, defined $O_{f}$ of shape $(O H \cdot O W, F N)$

Thus $\phi(I) \cdot F_{f}=O_{f}$, and $\operatorname{vec}\left(\phi(I) \cdot F_{f}\right)=\operatorname{vec}\left(O_{f}\right)$
Since $\operatorname{vec}(A X B)=\left(B^{T} \otimes A\right) \operatorname{vec}(X)$, we have

$$
\begin{align*}
\operatorname{vec}\left(O_{f}\right) & =\operatorname{vec}\left(\phi(I) F_{f} I_{F N}\right)=\left(I_{F N} \otimes \phi(I)\right) \operatorname{vec}\left(F_{f}\right)  \tag{1}\\
& =\operatorname{vec}\left(I_{O H \cdot O W} \phi(I) F_{f}\right)=\left(F_{f}^{T} \otimes I_{O H \cdot O W}\right) \operatorname{vec}(\phi(I)) \tag{2}
\end{align*}
$$

where $I_{F N}, I_{O H \cdot O W}$ identity matrix of shape same as subscript.
Then

$$
\begin{aligned}
\frac{\partial L}{\partial \operatorname{vec}\left(F_{f}\right)}=\left(\frac{\partial L}{\partial \operatorname{vec}\left(F_{f}\right)^{T}}\right)^{T} & =\left(\frac{\partial L}{\partial v e c\left(O_{f}\right)^{T}} \frac{\partial \operatorname{vec}\left(O_{f}\right)}{\partial \operatorname{vec}\left(F_{f}\right)^{T}}\right)^{T} \\
& =\left(I_{F N} \otimes \phi(I)\right)^{T} \frac{\partial L}{\partial v e c\left(O_{f}\right)} \quad \text { (by Eq. (1)) } \\
& =\left(I_{F N} \otimes \phi(I)^{T}\right) \operatorname{vec}\left(\frac{\partial L}{\partial O_{f}}\right) \\
& =\operatorname{vec}\left(\phi(I)^{T} \frac{\partial L}{\partial O_{f}} I_{F N}\right)
\end{aligned}
$$

thus $\frac{\partial L}{\partial F_{f}}=\phi(I)^{T} \frac{\partial L}{\partial O_{f}}$, note same as BP for linear layer.

Also,

$$
\begin{aligned}
\frac{\partial L}{\partial v e c(\phi(I))^{T}} & =\frac{\partial L}{\partial \operatorname{vec}\left(O_{f}\right)^{T}} \frac{\partial \operatorname{vec}\left(O_{f}\right)}{\partial \operatorname{vec}(\phi(I))^{T}} \\
& =\frac{\partial L}{\partial \operatorname{vec}\left(O_{f}\right)^{T}} \cdot\left(F_{f}^{T} \otimes I_{O H \cdot O W}\right) \quad \text { (by Eq. (2)) } \\
& =\left[\left(F_{f} \otimes I_{O H \cdot O W}\right) \operatorname{vec}\left(\frac{\partial L}{\partial O_{f}}\right)\right]^{T} \\
& =\operatorname{vec}\left(I_{O H \cdot O W} \frac{\partial L}{\partial O_{f}} F_{f}^{T}\right)^{T}
\end{aligned}
$$

thus $\frac{\partial L}{\partial v e c(\phi(I))}=\operatorname{vec}\left(\frac{\partial L}{\partial O_{f}} F_{f}^{T}\right)$, and $\frac{\partial L}{\partial \phi(I)}=\frac{\partial L}{\partial O_{f}} F_{f}^{T}$, note same as BP for linear layer.

